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Organic peracids are versatile reagents capable of oxidiz- 
ing a variety of functional groups under generally mild con- 
ditions.' Peracids react with olefins,2  amine^,^  ketone^,^ 
~ u l f i d e s , ~  and a number of other functional groups.lI6 In ad- 
dition, their solubility in organic solvents, ease of handling, 
and commercial availability make these reagents particu- 
larly attractive for the oxidation of organic compounds. 

While an alcohol functionality can influence the stereo- 
chemistry of peracid epoxidations, alcohols themselves are 
generally inert to these  reagent^.^ The observation that 
keto nitroxide 1 i s  produced in the peracid oxidation of 
amino alcohol 2s suggests a nitroxide-induced oxidation of 
alcohols by peracids. Indeed, addition of m- chloroperben- 
zoic acid to a solution of phenyl-2-propanol and a catalytic 
amount of 2,2,6,6-tetramethylpiperidine-l-oxyl (3) in 
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methylene chloride a t  room temperature results in nearly 
quantitative conversion of the alcohol to phenyl-2-propa- 
none after 1 hr. The reaction requires 1 equiv of peracid, 
though, in practice, a slight excess is employed to offset the 
simultaneous nitroxide-catalyzed decomposition of the per- 
acid (vide infra). The reaction is also catalyzed by mineral 
acids;g hence the overall oxidation is described by eq 1. 

3," 
RIR2CHOH + I72-ClPhC03H - 

R,R,CO + m-ClPhCO,H + H,O (1) 

The nitroxide catalyst can be conveniently generated in 
situ by reaction of the corresponding amine, 2,2,6,6-tetra- 
methylpiperidine (TMP), or its hydrochloride (TMP-HCl) 
with m- chloroperbenzoic (Use of TMP-HC1 also 
satisfies the requirement for acid catalysis.ll) The reaction 
can be conducted in methylene chloride, chloroform, or 
ether. Results of oxidation of a number of representative 
alcohols by this procedure are presented in Table I. These 
results clearly demonstrate the efficiency of this method 
for the conversion of secondary alcohols to ketones. Pri- 
mary alcohols generally yield carboxylic acids, although in 
some cases the reaction stops a t  the aldehyde stage (see 
Table I).12 

It is noteworthy that except for the case of cyclohexanol, 
little or no Baeyer-Villiger reaction of the ketonic products 
is encountered under the reaction conditions. This is not 
surprising, since the Baeyer-Villiger reaction generally re- 
quires longer reaction times or higher temperatures and 
employs stronger peracids than are necessary for the alco- 
hol oxidation.4c Cyclohexanol (a notable exception) is con- 
siderably more reactive than its cyclic congeners in the 
Baeyer-Villiger r e a c t i ~ n . ~ ~ J ~  With reactive ketones, such 
as cyclohexanone, it is possible to suppress or enhance the 
Baeyer-Villiger reaction by proper choice of reaction con- 
ditions. In general, Baeyer-Villiger reaction of the ketonic 
products can be avoided by conducting the reaction under 
mild conditions (see Table 11). 

Although no detailed mechanistic studies of this reaction 
have been undertaken, a number of observations pertinent 
to a possible mechanism are noteworthy. First, stable radi- 
cals other than the piperidine nitroxides, such as galvinoxyl 
or the pyrrolidine nitroxides,14 neither catalyze nor retard 
the oxidation. Inhibitors, such as 2,6-di-tert- butyl-4-meth- 
ylphenol (BHT) or ethyl crotonate, likewise have no effect 
on the reaction. Second, addition of nitroxide 3 to an acidi- 
fied solution of m-chloroperbenzoic acid in methylene chlo- 
ride produces an intense yellow color which persists for 
several hours and then slowly fades if no alcohol is present. 
In the absence of mineral acid, the yellow color appears 
gradually. (Alcohols are oxidized more slowly in the latter 
solutions.) Finally, nitroxide 3 catalyzes the decomposition 
of m- chloroperbenzoic acid in methylene chloride and this 
decomposition is accelerated by alcoh01s.l~ Figure 1 com- 

Table I 
Nitroxide-Catalyzed Oxidation of Alcohols with m-Chloroperbenzoic Acida 

Alcohol Registry no. Product( s)  Regis t r j  no. Yield, % b 

~ ~~ 

Cyclopentanol 96-41-3 C yclopentanone 120-92-3 77 

Cyclohexanol 108- 93- 0 108-94-1 (4) 
502-44-3 (5) See Table I1 
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Cycloheptanol 502-41 - 0 C ycloheptanone 502-42-1 81 
Phenyl-2-propanol 698-87-3 Phenyl- 2-pr opanone 103-79-7 87 
2 -0ctanol 123-96-6 2 -0ctanone 111-13-7 94 
Borneol 507-70-0 Camphor 76-22-2 94 
Norborneol 1632-68-4 Norcamphor 497-38-1 95  
Cyclopr opylmethyl- 765-42-4 Cyclopropyl methyl 765-43-5 81 

Benzyl alcohol 100-51-6 Benzaldehyde 100-52-7 76 

Isopentyl alcohol 123- 51-3 3-Methylbutyric acid 503- 74-2 8 5" 
1 -Heptanol 111-70-6 Heptanal 111-71-7 40Cid 

wrbinol  ketone 

1-pentaiiol 71-41-0 Pentanoic acid 109 - 52- 4 9 0" 

3,5-Dimethoxy - 705-76-0 3,5-Dimethoxy- 65-85-0 GOC 
benzyl alcohol benzoic acid 

a Representative procedure is given in the Experimental Section. * Yields are those of pure, distilled products unless otherwise indicated. 
Heptanoic acid was also produced in ca. 40% yield. Yield determined by gas chromatography. 
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Table I1 
Nitroxide-Catalyzed Oxidation of Cyclohexanola 

4 5 

Equiv of peracid 

(per mol Concn of 

Run cyclohexanol) peracid, hf 34 4"  2% 9 

1 1 .a 0.25 97 3 
2 1 .!j 0.25 94 6 
3b 2 .0 0.13 91 9 
4 2.0 0.13 81 19 
5 2 .o 0.25 76 24 
6 3 .0 0.25 44 56 
7" 2 .o 0.25 29 71 

a Product ratios were determined by gas chromatography. Re- 
actions were allowed to proceed for 2 hr prior to work-up. Except 
for run 1, less than 10% of the starting material remained a t  the 
time of analysis. 'The concentration of nitroxide was ca. 0.002 M .  

Reaction was buffered 
with solid sodium bicarbonate. 

Peracid was added over a I-hr period. 

pares the rate of' decomposition of m- chloroperbenzoic acid 
by 3 in the presence and absence of mineral acid and in the 
presence of alcohol. 

These observations suggest a reversible, acid-catalyzed 
complex formation between peracid and nitroxide. This 
complex could decompose reversibly to  starting materials 
or irreversibly by reaction with solvent or alcohol (Scheme 
I). A likely structure for this complex is radical cation 6, 

Scheme I 
OH 1' 

Q6+ m-ClPhC0,H + H,O 

II 
0 
7 

7 + RIRLCHOH -----) RIR?CO + HS 
the  formal result, of a carbonyl addition to  the protonated 
peracid by the nitroxide. Complex 6 could dissociate re- 
versibly via electron transfer to produce cation 7, m-chloro- 
benzoic acid, and water. Cationic species like 7 have been 
postulated as intermediates in a number of reactions of ni- 
troxides.16 Indeed, stable oxoammonium salts related to 7 
have been isolated and on treatment with alcohols yielded 
the corresponding ketones.17 In the absence of further in- 
formation, the exact nature of the reactive intermediate in 
this reaction can only be speculative; however, it  is clear, 
since we are dealing with a free-radical species, that a one- 
electron transfer must be involved a t  some stage of the 
reaction. 

While this method is limited to those alcohols which do 
not bear functional groups reactive toward peracids, the 
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T I M E  CMIN.1 f 
Figure 1. NitEoxide-catalyzed decomposition of n-chloroperben- 
zoic acid in methylene chloride. Plot of percent decomposition of 
0.2 M rn-chloroperbenzoic acid vs. time in minutes for peracid so- 
lutions containing: A, no additives; B, TMP (0.002 M ) ;  C, TMP. 
HCl(O.002 M ) ;  D, TMP-HCl(0.002 M )  plus cycloheptanol(O.2 M ) .  
See Experimental Section for details. 

possibility of effecting multistage oxidations by this meth- 
od is attractive. For example, the epoxidation-oxidation of 
an olefinic alcohol can avoid the complex product mixtures 
resulting from epoxidations of olefinic ketones.ls Attempt- 
ed preparation of epoxy ketone 9, by epoxidation of keto 
olefin 8, yielded only a rearranged Baeyer-Villiger prod- 
uct.lg The desired compound was finally prepared in a 
three-step sequence, the last step (chromium trioxide-pyri- 
dine oxidation of epoxy alcohol 10) of which occurred in 
only 31% yield.20 We have achieved a one-pot preparation 
of 9 in 86% yield by epoxidation of olefinic alcohol 11 with 1 

9 

*OH 10 / '  

&OH 11 

equiv of m-chloroperbenzoic acid in methylene chloride 
followed by addition of a second 1 equiv of peracid and a 
catalytic amount of TMP-HCl to effect oxidation of the al- 
cohol. Clearly, this one-pot sequence is the method of 
choice for this type of transformation. Combined with the 
versatile oxidizing properties of peracids, this unique meth- 
od for alcohol oxidation can provide many novel approach- 
es to multiple oxidations of polyfunctional molecules. 

Experimental  Sectionz1 
The alcohols used in this study were obtained from commercial 

sources. 2,2,6,6-Tetramethylpiperidine hydrochloride was pre- 
pared by passing dry hydrogen chloride into an ethereal solution of 
T M P  (Aldrich). The resulting hygroscopic solid was stored in a 
desiccator or in methylene chloride solutions (approximately 0.2 
M )  containing 1-2% ethanol. 

Representative Procedure for Oxidation of Alcohols. To a 
stirred solution of 2.28 g (20 mmol) of cycloheptanol and 1 ml (0.2 
mmol) of a 0.2 M solution of TMP-HCl in methylene chloride was 
added, over 15 min, a solution of 6.0 g (30 mmol) of 85% m-chloro- 
perbenzoic acid (Aldrich) in 50 ml of methylene chloride. The re- 
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sul t ing mix tu re  was st irred a t  ambient temperature for  1.5 hr and 
then transferred t o  a separatory funnel. T h e  usual work-upz1 af- 
forded a pale yellow residue which was dist i l led a t  reduced pres- 
sure t o  y ie ld  1.85 g (81%) o f  cycloheptanone. 
exo-5,6-Epoxy-2-norbornanone (9). T o  a stirred, ice-chilled 

solut ion o f  2.20 g (20 mmol)  o f  5-norbornen-2-01 (11) in 5 ml o f  
methylene chloride was added a solut ion o f  4.3 g (21 mmol)  o f  85% 
rn-chloroperbenzoic acid in 50 ml o f  methylene chloride. Analysis 
o f  the  reaction mix tu re  after 2 hr revealed t h a t  a l l  o f  the start ing 
mater ia l  h a d  reacted. T o  the  resultant mix tu re  was added 1 ml(0.2 
mmol )  o f  a 0.2 M solut ion o f  TMP-HCl in methylene chloride fol- 
lowed by a n  addi t ional  5.1 g (25 mmol)  o f  m-chloroperbenzoic acid 
in 50 ml o f  methylene chloride. Af ter  1.5 hr, the mix tu re  was trans- 
fer red t o  a separatory funne l  and worked up as usual. T h e  residue, 
a mix tu re  o f  epoxy ketone 9 and n i t rox ide 3, was subl imed t o  af- 
fo rd  2.1 g (86%) of  pure 9 whose mel t ing po in t  and in f rared spec- 
trum correlate w i t h  those reported:20 mass spectrum m l e  (re1 in- 
tensity) 124 (M+, 24.41, 106 (2.6) ,  96 (24.0), 95 (43.0), 82 (77.6), 81 
( loo ) ,  68 (52.8), 67 (57.1), 41 (38.9), 39 (56.4). 

N i t r o x i d e - C a t a l y z e d  Decompos i t ion  of m-Chloroperben-  
zo ic  Ac id.  A stock solut ion o f  0.2 M rn-chloroperbenzoic acid in 
methylene chloride was d iv ided i n t o  four equal port ions designat- 
e d  A-D. Solut ion A was a control. T o  solutions B-D were added 
respectively TMP (f ina l  concentrat ion 0.002 M ) ,  TMP-HCl ( f ina l  
concentration 0.002 M ) ,  and TMP-HC1 (0.002 M )  p lus  cyclohepta- 
no1 ( f ina l  concentration 0.2 M ) .  Al iquots  were wi thdrawn a t  t i m e d  
intervals and the concentrat ion o f  peracid was determined iodome- 
t r ica l ly  using the  standard procedure.22 T h e  decomposition was 
followed for  a 2-hr per iod (approximate t ime requi red for comple- 
t i o n  of the alcohol oxidation). T h e  results are p lo t ted  as percent 
decomposition of  peracid vs. t ime in Figure 1. 

R e g i s t r y  No.-& 2564-83-2; 9, 55044-07-0; 11, 13080-90-5; 
TMPaHCl, 935-22-8. 
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